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Obtaining pressure versus concentration phase diagrams in spin systems from Monte Carlo

simulations
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We propose an efficient procedure for determining phase diagrams of systems that are described by spin
models. It consists of combining cluster algorithms with the method proposed by Sauerwein and de Oliveira
where the grand-canonical potential is obtained directly from the Monte Carlo simulation, without the neces-
sity of performing numerical integrations. The cluster algorithm presented in this paper eliminates metastability
in first-order phase transitions allowing us to locate precisely the first-order transition lines. We also produce a
different technique for calculating the thermodynamic limit of quantities such as the magnetization whose
infinite volume limit is not straightforward in first-order phase transitions. As an application, we study the
Andelman model for Langmuir monolayers made of chiral molecules that is equivalent to the Blume-Emery-
Griffiths spin-1 model. We have obtained the phase diagrams in the case where the intermolecular forces favor
interactions between enantiomers of the same type (homochiral interactions). In particular, we have determined
diagrams in the surface pressure versus concentration plane, which are more relevant from the experimental

point of view and less usual in numerical studies.
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I. INTRODUCTION

The importance of numerical simulations in physics is due
to the fact that very few models can be exactly solved. In
principle one may directly simulate any model on a com-
puter. Moreover, the Metropolis [1] and the Glauber [2] al-
gorithms used in Monte Carlo (MC) simulations are very
general and easy to implement. In practice things are not so
simple. Near second-order phase transitions the configura-
tions generated by these algorithms present strong temporal
correlations (critical slowing down), which prevent an effi-
cient sampling of the configuration space. In addition, hys-
teresis effects due to metastability prevent a precise location
of first-order transition lines.

In recent years, several techniques have been proposed to
circumvent these problems such as the reweighting technique
by Berg and Neuhaus [3] and the simulated tempering by
Marinari and Parisi [4]. A different approach is the use of
cluster algorithms pioneered by Swendsen and Wang [5] and
by Wolff [6]. Several studies have shown the efficiency of
cluster algorithms in reducing the critical slowing down [5].
More recently, it has been shown that the cluster dynamics
may practically eliminate metastability in first-order phase
transitions. So far this has been achieved only for the Blume-
Emery-Griffiths (BEG) spin-1 model [7,8], for which a spe-
cial cluster algorithm has been developed [9,10].

In this paper, we present a simple cluster algorithm that
eliminates metastability in first-order phase transitions and
combine it with the Sauerwein and de Oliveira (SO) method
that allows us to obtain the surface pressure directly from
numerical simulations [11]. In the original formulation of the
SO method, the authors used the Metropolis dynamics to
generate the system configurations. However, as explained

*fiore @if.usp.br
Tceugenio@if.usp.br

1539-3755/2007/76(2)/021118(9)

021118-1

PACS number(s): 05.70.Fh, 05.10.Ln, 05.50.+q

above, this is not the best choice near phase boundaries. We
also introduce a simple procedure to calculate the order pa-
rameters and the concentrations of molecules in the neigh-
borhood of a first-order line from numerical simulations.

As an application of our method, we have determined the
phase diagrams of the Andelman model for Langmuir mono-
layers made of chiral molecules. More specifically, we were
interested in surface pressure versus concentration phase dia-
grams, which are more interesting from the experimental
point of view. The Andelman model was first studied by
using the mean field approach on a bipartite lattice [12].
However, x-ray diffraction experiments suggest that the con-
densed phases of Langmuir monolayers tend to form trian-
gular structures, and not a bipartite lattice as considered by
Andelman. In order to be more consistent with the physics of
Langmuir monolayers, Pelizzola et al. [13] have studied the
heterochiral case on a two-dimensional triangular lattice, us-
ing the cluster variation method, and have obtained phase
diagrams that are qualitatively different from Andelman’s.
We study through MC simulations the remaining homochiral
case, and we show that, in contrast with the heterochiral
case, the MC and the mean field methods give results that are
in good agreement.

This paper is organized as follows: in Sec. II we briefly
review the Andelman model, in Sec. III we present the clus-
ter algorithm and briefly review the Sauerwein de Oliveira
method, and in Sec. IV we discuss the numerical results and
conclude in Sec. V.

II. CHIRAL LANGMUIR MONOLAYERS AND THE
BLUME-EMERY-GRIFFITHS MODEL

Langmuir monolayers are formed by spreading am-
phiphilic molecules in an air-water interface. Amphiphilic
molecules are strongly asymmetric, constituted by two parts
with opposite features. The first part—the head—is hydro-
philic. It is made of polar chemical groups and remains on
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the water. The second part—the tail—is hydrophobic and
made of hydrocarbon chains, which remain in the air. When
the tail is strongly hydrophobic, so that the molecules are
insoluble in water, Langmuir monolayers form a quasi-two-
dimensional system. This system can be described in terms
of the surface pressure and temperature and it displays sev-
eral phases with different structural properties (see, for in-
stance, Ref. [16]).

A chiral molecule exists in two forms + and —, called
enantiomers, related by a spatial transformation that involves
a change of parity. An important feature of the physics of
chiral Langmuir monolayers is the determination of the chi-
ral discrimination, which occurs when the interaction energy
between enantiomers with the same chirality is different
from the interaction energy of enantiomers with different
chirality. When the intermolecular forces favor the attraction
between enantiomers of the same species, they are denomi-
nated homochiral and they lead to chiral segregation. On the
contrary, if the attraction between different enantiomers is
favored, they are named heterochiral and they lead to a ra-
cemic mixture.

To study the effect of the chirality theoretically, Andelman
proposed a simple lattice gas model that can be described by
the Hamiltonian [13]

H=- E 2 er.er,iNv,j - E 2 :u“xNv,i’ (1)

(i) r.s i

where the first sum is over nearest-neighbor pairs, the letters
i and j denote the sites of a two-dimensional triangular lat-
tice, the letters r and s denote the enantiomer species (r,s
=+ or —), €, are the coupling energies (€,,=€__ and €,_
=€_,), N,;=0,1 are the occupation numbers at site i, and p
is the chemical potential of the species s.

This model is equivalent to the Blume-Emery-Griffiths
(BEG) spin-1 model [7,8], as it can be seen by relating the
occupation numbers and the spin-1 variables through the re-
lations

i ia N—,i= i i7 (2)

where 0;=0,+1. Thus, ;=1 (~1) represents a + (—) enan-
tiomer and 0;=0 a vacancy. In this way, we obtain the BEG
Hamiltonian

H=-2 [Joo;+ ¢oior]- X [Ho— Aol (3)

(i.j) i

The case J>0 corresponds to the homochiral case (ferro-
magnetic BEG). When J<0, we have the heterochiral one
(antiferromagnetic BEG). We will concern ourselves with the
homochiral case, since it has not been studied beyond the
mean-field approach. The parameters J, ¢ depend on the in-
teraction energies €,,=€__ and €,_=€_, between nearest-
neighbor enantiomers through the formulas

1
J= E(E++ -€.), (4)

and
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b= %(€+++ €). (5)

The fields H and A are related to the chemical potential of
the species + and — and they are given by

My — M

H=—", 6
5 ©)
and
My + o
—A=—"T" 7
: (7)

They are the conjugate parameters of the chiral order param-
eter and the density of enantiomers defined by

1%
M= X o )=(N)-(N), (8)
i=1
and
|4
0=\ 207 )=(N)+(N), 9)
i=1

where N, are the total number of enantiomers + and V=L? is
the number of lattice sites. In particular, we are interested in
determining the concentration of enantiomers + or — (x, or
x_, respectively) given by

_ Wy I My 1 m
x*’<N+>+<N_>‘2<1‘Q>‘2<1‘q)’ (10

where m=M/V, g=Q/V.

In this work we shall study first-order transitions between
concentrated phases where the enantiomers are close to each
other (phases C, and C_ rich in enantiomers of type + and —,
respectively) and the so-called liquid expanded (LE) phases,
where there are many vacancies. In the spin-1 language, we
shall study transitions between ferromagnetic and paramag-
netic phases rich in zero spins.

III. MONTE CARLO METHOD
A. Cluster algorithm

In experiments involving chiral Langmuir monolayers the
nonchiral contribution to the interaction energy between the
enantiomers is usually larger than the chiral one. In our sim-
plified model, this corresponds to choosing the parameter ¢
larger than J. In this paper, we will consider the ratio ¢/J
=3. This choice has also been previously made by Andelman
[12] and Pelizzola er al. [13]. For ¢/J=3, Eq. (3) can be
rewritten, up to a constant term, in the following way:

N N
BH==2K2 5, ,+(R-2K)2 o} -HX oy, (11)
Gy i=1 i=1
where we used the following identity —(o,07;+ ofcrjz)—Z(crl2
~1)(o7-1) =-20, .. K=PJ, A=BA, H=H, and 7 is the
coordination number. For this Hamiltonian, we propose the
following cluster algorithm:
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1. Choose randomly a site on the lattice and denote T..q
the value of its spin. This is the first spin of the cluster
(seed).

2. Choose, with the probability 0.5, one of the two other
possible spin values that are different from o..4. Call this
new value o, (it will remain fixed during the construction
of the cluster). For example, if 0geq iS +, Opey can be — or 0.

3. Activate the links between the seed and its nearest
neighbors that are equal to 0. With probability p=1
—¢2K_ Each new spin connected to the cluster by an acti-
vated link is added to the cluster. Next, we repeat the activa-
tion procedure to all the new spins of the cluster. The process
stops when all nearest neighbors have been tested and no
new spin is accepted. Now, we attempt to change this cluster
with spins equal to 0.4 into a cluster with spins o, (see
Fig. 1 for an example of a +—0 transition).

4. Evaluate the difference 5Hbulk=7:zbulk_Hbulks where

ﬁbulk is the cluster bulk energy (calculated neglecting bound-
ary links) when all spins are equal to 0,y and Hiyyy is the
cluster bulk energy when all spins are equal to O.q. If
OHp =0, we change all spins in the cluster to o, with
probability Ppi,(0—&)=1. If SHy,, >0, we change all
spins in the cluster to oy, With probability Pg,(o0— &)
=exp(—BHpun)-

To prove that the algorithm satisfies the detailed balance
condition we have to consider two types of transitions:
+— + and +«+0. For the first transition our algorithm is
equivalent to Wolff’s [6] and for this reason we shall con-
centrate on transitions of the second type. Let us consider, to
exemplify, the transition ++« 0. From Eq. (11), we obtain

oM 2K,

_ = — ¢~ BMbuik (12)
B 2Kl

where €, is the total number of boundary links that connect
sites with spins « inside the cluster and sites with spins y
outside the cluster.

The ratio between the transition probability W, _, 5 and the
reverse transition probability W5_,,, is given by

Woi  wpui(1 = p)“++Ppip(o — &)

Woo ol _p)KUOPﬂip(&_’ o)

(13)

The bulk term wy, is the sum of the probabilities associated
with all possible ways of activating links to construct the
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FIG. 1. Example of a possible
cluster transition. The heavy lines
are the activated links.

cluster. The term (1—p)%++ is the probability of not including
in the cluster a nearest-neighbor site with occupation vari-
able 0.y Analogous comments hold for the transition
Ws5_, 4 Clearly, wy,x=Wpux because for each configuration of
activated links in o there is a corresponding one in & (see
Fig. 1). Recalling the definition of Py;,, given in step 4 of the
algorithm, we see that the ratio of the flipping probabilities is
always equal to exp(—B8H,,). Finally, since 1-p=e~?K the
right hand sides of Egs. (12) and (13) are equal and this
equality implies detailed balance. It is worth mentioning that
the algorithm proposed here is a particular case of the cluster
algorithm proposed by Bouabci and Carneiro [9] and later
extended by Rachadi and Benyoussef [10] for other regions
of the parameter space.

B. Sauerwein and de Oliveira method

In order to determine the grand-canonical potential from
Monte Carlo simulations, one usually calculates one of its
derivatives and numerically integrates the results. To use this
technique one has to know the value of the grand-canonical
potential at a reference point and then numerically integrate
along a path which connects the reference point to the point
where one wants to calculate the grand-canonical potential.
An alternative is the method proposed by Sauerwein and de
Oliveira [11] that allows one to directly obtain the grand-
canonical potential from the MC simulation.

In this method, the largest eigenvalue of the transfer ma-
trix is directly evaluated from Monte Carlo simulations.
Since in the thermodynamic limit the grand partition func-
tion is proportional to the largest eigenvalue of the transfer
matrix, its calculation enables us to determine all thermody-
namic properties, in particular, the surface pressure that is the
negative of the grand-canonical potential.

In order to explain how to obtain the largest eigenvalue,
let us consider a triangular lattice with V sites divided in N
successive layers S;= (0,004, ...,07;) with L spins, V
=L X N. (All this applies to the triangular lattice that we use
in our paper.) The Hamiltonian may be decomposed in the
following way:

N

H =2 H(StSie1) (14)
k=1

where due to the periodic boundary conditions Sy, ;=S;. The
probability P(S;,S,,...,Sy) of a given configuration of the
system is given by

021118-3



CARLOS E. FIORE AND C. E. I. CARNEIRO

PHYSICAL REVIEW E 76, 021118 (2007)

FIG. 2. Grand-canonical po-
tential ¢/J versus D across the
first-order line for L=30, =0, and
t=0.8. The first graph refers to the
Metropolis algorithm and the sec-
ond to the cluster algorithm. The
symbol ° (X) indicates increasing
(decreasing) D. The symbols are
larger than the error bars.
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1
P(S]9S29 9SN) = ET(SDSZ)T(SbS?)) e T(SN5SI)’

(15)

where T(Sy,Si.1) =exp(=BH(Sy,Sk.1)) is an element of the
transfer matrix 7 and

Z="Tr(T") (16)

is the grand-canonical partition function. By using the spec-
tral expansion of the matrix 7 it is possible to show [11] that

1
<5S1,52>=)\_<T(Sl’sl)>- (17)

0
This expression enables us to calculate the largest eigenvalue
Ao of the transfer matrix 7 in terms of the averages (551’52)
and (7(S,,S})), where & s =1 when layers S, and S, are
equal and zero otherwise. We use a MC simulation to gener-
ate the configurations with which we calculate the averages.

In the specific case of the BEG Hamiltonian in the trian-

gular lattice with LX L sites, the transfer matrix 7 of a n
layer is given by

L
T(SmSnH) =eXp 2 [Ko-k,n(o'k,nﬂ + 0-1(+1,n + o-k+l,n+l)
k=1
+ :B¢a%,n(o-2k,n+l + O-i+1,n + 0%+1,n+1) - Ka’i,n
+Hoy,] (18)

The grand-canonical potential per site in the lattice gas rep-
resentation (or the free energy in the spin-1 representation) is
given by

1

¢=—Eln)\o=—73,

where P is the surface pressure.

(19)

IV. NUMERICAL RESULTS

In this section, we define the following dimensionless
quantities:

15

t=kgT/J, D=AMJ, h=H/J, II=Pl, (20)
where P, the surface pressure, is given by Eq. (19).

As a check on the efficiency of the proposed cluster algo-
rithm, we show in Fig. 2 the grand-canonical potential
versus the chemical potential D for 7=0 and 7=0.8. We con-
sidered a very low temperature, because in this case hyster-
esis effects are very strong. In Fig. 2 we compare the perfor-
mances of the Metropolis and the cluster algorithm on a
triangular lattice with periodic boundary conditions and lin-
ear dimension L=30. To evaluate ¢ and to estimate its sta-
tistical error after equilibrating the systems we have used 5
X 10* Monte Carlo steps divided into 1000 independent runs.
Note that with the Metropolis algorithm the system is
trapped in metastable states and even after millions of MC
steps it does not undergo a transition to the stable phase. This
does not happen with the cluster algorithm because the sys-
tem is able to easily pass from one phase to the other. The
efficiency of the algorithm allows us to determine first-order
transition lines with high precision and the good quality of
the data enables us to perform very precise finite size analy-
sis.

In principle it is possible to determine the transition point
using the free energy. As it can be seen in Fig. 2, there is a
kink in the free energy as a function of D at the transition
point D;. One can then perform a finite size analysis to ob-
tain D},. However, it is simpler and more efficient to analyze
the susceptibility whose finite size behavior is well known
for both first- and second-order phase transitions. After de-
termining D, we use the SO method at this point to calculate
the surface pressure. In first-order phase transitions, the sur-
face pressure, which is proportional to the negative of the
grand-canonical potential, does not have a finite size behav-
ior as simple as the susceptibility. As a function of the system
size, the surface pressure saturates quickly. Thus, the values
of the surface pressure that we use in our graphs come from
the largest lattices that we have simulated.

The susceptibility is defined as y,=L>((m>)—{|m|)*)/1,
where the magnetization m=2,0;/V. For a fixed system size
L, maintaining ¢ and h fixed, and increasing D toward the
coexistence line, one observes a peak in the susceptibility at
Dz, as seen in Fig. 3, where the lines were drawn only to
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guide the eye. In the thermodynamic limit, this peak be-
comes a delta-function singularity. According to Refs.
[14,15], the deviation of D; from its asymptotic value D,
decays as L2, in agreement with our results, shown in the
inset of Fig. 3. From this law, we have obtained the extrapo-
lated value D =12.0000(1).

In order to understand this result let us perform an exact
zero temperature calculation of the transition point Dj. At
zero temperature the free energy F=U—-TS=U=(H), where
H is given in Eq. (3). The system chooses the phase that
minimizes the energy U. At T=0, for small values of D all
spins are +1 if >0 or —1 if 1 <0. If D is large enough, the
energy is minimized when all spins are 0. The transition line
is obtained by equating the energies in the ferromagnetic
(condensed) phase with all o;=+ (or —) and in the paramag-
netic (liquid expanded) phase with all ¢;=0. Taking into ac-
count Eq. (3), with ¢=3J, and the definitions given in Eq.
(20), we calculate the energy U, of the ferromagnetic phases
and the energy U, of the paramagnetic phase

U.=VIJ(-12F h+D), Uy=0. (21)
The equation U,=Uy< D=12+h gives the transition lines
between the ferromagnetic and paramagnetic phases. The
equation U,=U_< h=0 gives the transition line between the
two ferromagnetic phases (this holds for D=<12; for D> 12
the system is in the paramagnetic phase). All these transition
lines are represented in Fig. 4, which gives the phase dia-
gram of the Langmuir monolayer in the plane of the chemi-
cal potentials A X D. [Recall that hJ=H=(u,—u_)/2 and
DJ=A=(—p,—pu_)/2.] The circles are the results of Monte
Carlo simulations performed at r=2.4. The error bars are
smaller than the circles. It is interesting to remark that in the
temperature interval relevant for Langmuir monolayers the
zero temperature calculations give practically the same re-
sults as the MC simulations and the mean-field calculations
for the transition lines. In Langmuir monolayers language,
for h=0 and low values of D (higher chemical potentials),

) T 1 1 3 G—oL=42

FIG. 3. Susceptibility y, versus
D for several values of system size
L, h=0 and t=2.4. In the inset, we
plotted the value of D for which
the susceptibility is maximum
(D}) versus L2,

we have the condensed phase characterized by a 1:1 mixture
of the two enantiomers. For higher values of D a transition
from the condensed phase, rich in enantiomers +1, to the
phase poor in enantiomers, the liquid expanded phase takes
place. When the chemical potential of the species is different
(h#0), we have a larger fraction of enantiomers + (—)
whenever 4>0 (h<0), and in the limit of #>>0 (<0) the
solution only contains the enantiomer + (-).

Another procedure for locating the phase transition con-
sists of determining the crossing point of the g versus D
isotherms for different system sizes. As shown in Ref. [17],
the crossing point is independent of the lattice size and prop-
erly identifies the transition, as shown in Fig. 5. We shall
present below an independent derivation of this important
result based on the work of Borgs and Kotecky [14].

For h=0 all curves of ¢ versus D cross at D*
=12.0000(1) and g=2/3 for this value of D. This criterion
for estimating the value of D for which the phase transition
takes place agrees very well with the finite size analysis of
the susceptibility y, that we have discussed above. For i
#0, two phases coexist at the point D}, which now depends
on h and all isotherms cross at ¢=0.5. We remark that if
single flip algorithms are used to generate the dynamics, one
will not be able to determine the crossing of the curves due
to hysteresis effects.

More relevant from the point of view of Langmuir mono-
layers, and other physical systems involving a mixture of
molecules, are the surface-pressure versus concentration dia-
grams. But before discussing this phase diagram we will de-
scribe our procedure to fit the curves in Fig. 5 and to obtain
the V—oo limit of ¢ and m that are used to determine the
concentration x, [see Eq. (10)]. Since the simulated system is
finite, the calculated quantities will be affected by finite size
effects. As mentioned previously, in recent years, the finite
size theory of first-order phase transitions has been studied
extensively for quantities, such as the specific heat and the
susceptibility. There are fewer studies for the dependence on
the system size of quantities such as the magnetization or the

021118-5



CARLOS E. FIORE AND C. E. I. CARNEIRO

PHYSICAL REVIEW E 76, 021118 (2007)

8

LE

FIG. 4. Phase diagram in the
space of the chemical potentials /
versus D. The symbols C, and C_
denote the condensed phases rich
in enantiomers + and —, respec-
tively, and LE is the liquid ex-
panded phase. The solid line is the
t=0 calculation, which practically
coincides with the mean-field re-
. sult. The circles are from MC
simulations.

4 8 12 16
D

concentration of molecules [18,19]. In the following, we pro-
pose a method to determine the concentrations of the phases
that coexist directly from the numerical simulations. The first
step consists of noting that g X D (or m X D) isotherms can
be fitted by the equation

b+ ce™ P

=, 22
1 +de% (22)

q

where a, b, ¢, and d are fitting parameters and é6D=D-D:.
We are going to show below that @ depends on the system

20

size L and the temperature 7. An analogous expression can
be written down for the order parameter m. The expression
above was inspired by the work of Borgs and Kotecky [14],
where it is shown that at low temperatures the partition func-
tion for two coexisting phases can be written as

Z=[e PhBIY 4 o=PRBNV(] 4 ¢7LLo), (23)

where & is the magnetic field (our system also depends on the
crystal field D), L, is a constant of the order of the infinite

oL=30 |
0 L=36
o L=42
A L=54 -
vV L=60
x L=150
0.6 -
FIG. 5. Order parameter g ver-
q sus D for h=0, t=2.4, and several
system sizes L. In the inset, a col-
04 lapse of all curves by plotting ¢
versus z=(D-DJ) L? .
0.2 -
0 . | | -
11.994  11.996 12.002 12.004 12.006

| L
11.998 12
D
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volume correlation length, and f; is a metastable free energy
for the phase i (i=1 or 2).

In our system, for 7=0 three phases coexist at the triple
point (D% =12). Thus, we expect the sum of three exponen-
tials instead of two as in Eq. (23). We have assumed that all
three exponentials have the same weight (we shall use our
results to check this point). In the neighborhood of the triple
point,

7 = e_BVfO + e‘BVf+ + e_.BVf—, (24)

where the f;=f(B8,h,D), i=0,+, are, respectively, the meta-
stable free energies of the paramagnetic and ferromagnet
phases. Away from the coexistence curve, only the f; associ-
ated with the correct phase remains and becomes the free
energy of the system [Z=exp(-B8Vf))].

The parameters m and ¢ are given by

L&an
BV aD

: L&an
~ BV oh

q= , (25)

For h=0, f,=f_=f.. Taking into account this fact and Eqgs.
(24) and (25), we can write the parameter g as

(dfoldD)e P01+ 2(9f JID)e P+
q= .

e_ﬁvf() + ze_ﬁvfi (26)

At the triple point fo=f,, where f;=f(8,h=0,D=Dy), i
=0,+ and the exponentials in Eq. (26), which contain the
only dependence on the lattice size, cancel out and we obtain

Il 4 f +
C]*EQ(B,O,D:@) ~ — ﬂ +2L .
3 ﬁD D=D"* 07D D=D"*
(27)

This is the reason why the g X D curves for different lattice
sizes cross at the same point. The crossing point provides
another method to locate the phase boundaries.

Our calculations are performed at low temperatures. In
mean field, the temperatures are measured in units of the
coordination number z. For the triangular lattice, z=6. Our
MC temperature t=2.4 is equivalent to a t=0.4 mean-field
temperature. We can use the exact zero temperature energies
given in Eq. (21) to estimate the derivatives in Eq. (27).
Recalling that f;=U;/VJ, i=0,%, at =0, we obtain df,/dD
=0 and df,/dD=1. Thus, at the triple point g*=~2/3, which
is the result that we obtain in Fig. 5.

An analogous demonstration holds for the case h#0,
where Z is the sum of two exponentials as in Eq. (23). The
factor 2 in Eq. (29) is replaced by 1 and the crossing of the
g X D curves occurs at the point g=0.5.

In the curves plotted in Fig. 5, D varies in the interval
[11.994, 12.006], which is very narrow. It is possible in this
case to expand the f;=f,(B8,h=0,D), i=0,+, around the
triple point,

fi=fi +1{"6D + 0((8D)?), (28)

where SD=D-D, fi=f{(B,h=0,D=D)
= (9f,/ dD)|{D=D.}, for i=0,+,

and fI"
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TABLE 1. Values of the fitting parameters obtained from the ¢
X D curves in Fig. 4 (1=2.4 and h=0). The numbers between brack-
ets are the uncertainties in the last digits.

L a b c d
24 233.2(9) 0.0173(7) 1.983(8)  2.000(8)
30 363(1) 0.0166(4) 1.986(2)  2.004(9)
36 521(2) 0.0161(4) 1.99(1) 2.01(1)
42 708(3) 0.0160(3) 1.99(1) 2.00(1)
48 925(4) 0.0160(3) 1.99(1) 2.00(1)
54 1168(6) 0.0160(3) 1.98(1) 2.00(1)
60 1.45(1)x10°  0.0165(7) 1.98(1) 2.00(2)

1y e BVIo D 4 o 11 o~ BVIL D

Ty— (29)
o BV D 4 0 ,~BVS D

which has the same form as Eq. (22) after we divide the
numerator and the denominator by exp(-BVf;"8D).

In Fig. 5 the symbols stand for the values of ¢ obtained
from the numerical simulations and the solid lines are fits of
the points using Eq. (22) by minimizing the ) merit function
[20]. In order to perform the fittings we used the Levenberg-
Marquardt method that is well described in Ref. [20], where
one can also find the subroutines that are necessary to imple-
ment the method. These subroutines return the variances of
the fitting parameters and the quality of the fitting. A few
words about the implementation of the subroutines is in or-
der. Our fitting function Eq. (22) contains exponentials
whose arguments may become very large. In order to avoid
numerical overflow it is convenient to use the asymptotic
values of ¢ when |8D| becomes too large. Define, for ex-
ample, g=b for 6D>30 and g=c/d for 6D<-30. Of
course, the number 30 is rather arbitrary. Nonlinear fittings
depend on a good initial guess of the fitting parameters. One
may proceed as follows. Note that b=g(D—=) and c/d
=q(D — —). Since in the simulations the D interval is finite,
instead of taking the |D|— o limit we use the values of ¢ in
our data set associated with the largest and the smallest val-
ues of D. Call them ¢, and ¢_, respectively, and put b=gq,,
c/d=gq_. Next define ¢*=¢g(D=D]) and q,=q(D=D,),
where D, <D, is chosen in the region where the graph ¢
X D has already started to curve down. It is simple to solve
the fitting parameters in terms of the following quantities:

1 (91-9)(q-~q")
a= * * ’
D.-D, [(g--q)(q -q.)

b=g.. czqiq_—in), i=L% )
q9--q q9--q

With this choice for the initial parameters, the convergence
of the fitting routine is very fast and the quality of the fitting
is very good (the factor Q that measures the goodness of fit
[20] is close to 1). In Tables I and II the errors of the param-
eters are the square roots of the variances (standard devia-
tions) that are returned by the fitting routines.
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TABLE II. Values of the fitting parameters obtained from the
mX D curves for t=2.4 and h=0.

L a b c d

24 233.4(9) 0.0047(6) 1.943(8)  1.998(8)
30 364(1) 0.0036(2) 1.943(9)  1.998(9)
36 523(2) 0.0029(1) 1.94(1) 2.00(1)
42 711(3) 0.0025(1) 1.94(1) 2.00(1)
48 930(4) 0.0022(1) 1.94(1) 1.99(1)
54 1175(6) 0.00200(9)  1.93(1) 1.99(1)
60 1.45(1)x 10°  0.0018(3) 1.93(2) 1.99(2)

The fitting parameters for the curves in Fig. 5 are given in
Table I. Now we can check the equal weight hypothesis for
the exponentials. For 2=0 the two condensed phases C, have
the same free energy and two of the three exponentials are
identical, as we discussed above. The ¢ X D curves in Fig. 5
are in the vicinity of the triple point, so we expect that d
~7. This is the result that we obtain (see Tables I and II for
the magnetization m).

For i # 0, there is the coexistence of two phases (LE and
C, or C_). Near the transition we have the sum of two ex-
ponentials with the same weight, as in Eq. (23). We have
checked that d= 1 near the transition line, as it was expected.

Comparing Egs. (22) and (26) we note that the parameter
a that appears in the exponent should be proportional to the
system volume. A In(a) X1n(L) plot gives the straight line
In(a)=A+B In(L) with A=-0.87(2) and B=1.990(6) for
Table I, and A=-0.88(2) and B=1.993(5) for Table II. Thus,
as expected, the constant a scales with the volume of the
system.

The values of g for the condensed and liquid expanded
phases are calculated by taking the L— oo limit in Eq. (22).
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The condensed phases occur in the region D—D’, <0 and for
this reason g—c/d as L—. The liquid expanded phase
occurs in the region D—D.>0 and g—b as L— . The
curves for m X D are very similar to the curves ¢ X D in Fig.
5 and can also be fitted by an expression analogous to Eq.
(22). Having calculated ¢ and m, we obtain x, through the
expression x,=(1+|m|/q)/2. The use of |m| instead of m is
due to technical reasons (see Secs. 2.3.3 and 2.3.4 in Ref.
[21]). As a consequence, the magnetization is small but not
zero when h=0. This introduces a small distortion in the
diagram of Fig. 6 near x,=0.5, but symmetry arguments
guarantee that m=0 when k=0 and the coexistence curve
passes through the point with x,=0.5 (filled circle in Fig. 6).

The 4> 0 half side of the diagram & X D is mapped onto
the right hand side of the surface-pressure versus concentra-
tion diagram (x,>0.5) whereas 7 <0 corresponds to the x,
<0.5 concentration range. As mentioned above, £=0 implies
that the fraction of enantiomers + and — are equal and in the
coexistence of the three phases, one has x,=0.5. From the
point of view of homochiral Langmuir monolayers, the chiral
segregation takes place, in contrast to the heterochiral case,
in which one has a racemic mixture. The surface pressure of
a 1:1 mixture of enantiomers is higher than the pressure for
pure enantiomers. This feature is verified in experiments in
which the chiral segregation occurs [16]. Unfortunately, to
date few experiments have been performed covering the
whole range of concentrations, usually they are restricted to
the 1:1 mixture and the pure cases. For comparison, we have
also plotted in Fig. 6 the results obtained from the mean-field
technique.

In contrast to the heterochiral case, for which the mean-
field results disagree with those obtained from the cluster
variational method, in the homochiral case the accordance
between the mean field and the numerical simulations is very
good.

FIG. 6. Surface pressure II
o ] versus concentration x, phase dia-
gram obtained by numerical simu-
lations (circles) and mean field
(lines).
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V. CONCLUSIONS

In this paper, we present an efficient way for determining
phase diagrams from numerical simulations. To illustrate it,
we have considered a simple model that describes the behav-
ior of homochiral Langmuir monolayers, which is equivalent
to the BEG model. It is worth mentioning that although we
have interpreted the phase diagrams obtained here in terms
of Langmuir monolayers, similar phase diagrams are ob-
tained when one uses the BEG model to describe a mixture
of two distinct species with vacancies. The use of a cluster
algorithm that eliminates metastability in first-order phase
transitions allows us to precisely locate the first-order transi-
tions lines. To determine the surface pressure we used the
method proposed by Sauerwein and de Oliveira in which the
surface pressure is determined directly from the numerical
simulations without the necessity of performing numerical
integrations. The fitting procedure proposed in this paper to
determine the concentrations, based on the work of Borgs
and Kotecky [14], is easy to implement and uses all infor-
mation contained in the order parameter curve. It seems to
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improve on the usual finite size analysis for the magnetiza-
tion near first-order transition lines in that it does not present
“overshooting™ effects [18,19] and both m and ¢ present a
monotonic behavior as a function of L, but this point has to
be further investigated by increasing the statistics. The elimi-
nation of metastability also enables us to use the crossing of
the curves ¢ X D (or m X D) for different lattice sizes as a
criterium for locating the phase boundaries. This usually can-
not be done due to hysteresis effects. Finally, we remark that
our approach is general and it can be used for any spin
model. In systems for which a cluster algorithm is not avail-
able, we can use other techniques, such as the multicanonical
approach [3] or the simulated tempering [4] to generate the
dynamics.
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